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Abstract
This study investigates the relationship between soil organic carbon (SOC) and soil microbial communities under various vegetation 
types within alpine ecosystems. Soils from three tree and three shrub communities in the Maixiu National Forest Park, Qinghai, 
China, were analyzed for SOC content and microbial community composition. Tree soils exhibited higher SOC content, particularly 
in the surface layers, which is associated with deeper root systems and greater belowground biomass. In contrast, shrub soils had 
lower SOC content, indicating faster carbon cycling. Fungal communities, particularly Ascomycetes, were positively correlated 
with SOC, while bacterial communities, including Proteobacteria and Actinobacteria, were linked to rapid organic matter turnover. 
These findings highlight the role of vegetation type in regulating microbial communities and carbon dynamics in alpine soils.
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1. Introduction
Global climate change, driven primarily by greenhouse gas 
emissions such as carbon dioxide, poses a significant challenge 
to humanity [1]. Soil, a pivotal carbon reservoir, influences the 
atmospheric carbon balance through its role in the global carbon 
cycle [2]. Alpine regions, characterized by unique climates 
and ecological conditions, host distinct forest ecosystems that 
significantly impact soil properties [3]. Microorganisms within 
these soils play a critical role in biogeochemical processes, 
including organic matter decomposition, nutrient cycling, and 
carbon dynamics. Particularly in alpine regions, where cold 
climates slow organic matter decomposition, the distinctive carbon 
accumulation and release processes exert a substantial impact on 
the global carbon balance [4,5]. Despite this, our comprehension 
of the interactions between soil organic carbon (SOC) and soil 

microorganisms across different alpine forest communities is 
limited, impeding precise assessments and predictions of alpine 
ecosystem balances.

2. Materials and Methods
The study area is located in Maixiu National Forest Park 
(35°8'N–35°21'N, 101°46'E–102°04'E), situated in the Huangnan 
Tibetan Autonomous Prefecture of Qinghai Province, China. The 
park lies on the eastern edge of the Qinghai-Tibet Plateau, with 
an elevation range of 2699–4971 m (Figure 1). The experimental 
area falls within the park's managed zone and is characterized by 
a cold and humid climate, with an average annual temperature of 
approximately 5.8°C, annual precipitation of around 600 mm, and 
total annual sunshine duration of about 2600 hours [6,7].
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This study examines the interactions between soil microorganisms 
and SOC in distinct alpine tree and shrub communities within 
Maixiu National Forest Park. Field and laboratory methods were 
employed to collect and analyze environmental data (Table 1). SOC 
was measured using standard volumetric methods, and Illumina 
sequencing assessed soil microbial diversity and composition. The 

research explores SOC dynamics, focusing on the regulatory role 
of microbial communities in organic matter decomposition and 
carbon transformation. This work aims to elucidate micro-scale 
carbon dynamics in alpine ecosystems, informing predictions of 
carbon storage changes and supporting ecosystem management 
under climate change.
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Figure 1 Overview of the research area54 
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Plot Name Dominant Species 
Elevation
（（m）） 

Aspect Geographic Location 
Soil Temp
（（℃）） 

Soil Moisture
（（%）） 

TREE1 Picea crassifolia 3044.61 Semi-shaded slope 101.95203200E35.21850565N 12.4 29.4 

TREE2 Picea asperata 3080.52 Semi-shaded slope 101.94335125E35.21073333N 11.6 26.3 

TREE3 Picea purpurea 3139.15 Semi-shaded slope 101.93374312E35.18389017N 9.8 23.2 

SHRUB1 Potentilla fruticosa 3333.36 Sunny slope 101.87141898E35.29244219N 6.6 18.2 

 4 

SHRUB2 Spiraea salicifolia 3390.9 Shaded slope 101.86860223E 35.28993841N 5.4 16.3 

SHRUB3 Caragana sinica 3397.12 Semi-shaded slope 101.86897677E35.29096619N 4.9 15.2 
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Table 1. Basic Characteristics of the Research Plots66 

Note:  a. Picea crassifolia  b. Picea asperata  c. Picea purpurea  d. Potentilla fruticosa  e. Spiraea salicifolia  67 

f. Caragana sinica68 

69 

3. Results and Discussion70 

3.1 Belowground Biomass and Soil Organic Carbon Content71 

Figure 2 delineates pronounced disparities in belowground biomass and soil 72 

organic carbon (SOC) content between tree (TREE) and shrub (SHRUB) communities 73 

across soil depths. In the surface layer (0–10 cm), tree soils (e.g., TREE1: 912 ± 50 74 

g/m²) harbor significantly greater belowground biomass than shrub soils (e.g., 75 

SHRUB1: 411 ± 30 g/m²). This trend continues with decreasing depth; at 10–20 cm, 76 

TREE1's biomass reduces to 204 ± 20 g/m², and SHRUB1 to 104 ± 15 g/m², while at 77 

20–30 cm, values are 106 ± 10 g/m² for TREE1 and 52 ± 5 g/m² for SHRUB1. 78 

Correspondingly, SOC content is markedly higher in tree soils in the surface layer 79 

(TREE1: 262 ± 20 g/kg vs. SHRUB1: 153 ± 15 g/kg), decreasing with depth to 52 ± 5 80 

g/kg for TREE1 and 42 ± 5 g/kg for SHRUB1 at 20–30 cm.81 

82 

The elevated belowground biomass and SOC in tree communities suggest a more 83 

substantial contribution to carbon fixation and organic matter input, attributed to their 84 

extensive root systems(Alberti et al. 2015). Conversely, shrubs, with their shallower 85 

root systems, exhibit lower biomass and SOC, indicating reduced carbon 86 

sequestration and faster turnover rates(Tariq et al. 2024). The positive correlation 87 

 4 

SHRUB2 Spiraea salicifolia 3390.9 Shaded slope 101.86860223E 35.28993841N 5.4 16.3 

SHRUB3 Caragana sinica 3397.12 Semi-shaded slope 101.86897677E35.29096619N 4.9 15.2 

65 

Table 1. Basic Characteristics of the Research Plots66 

Note:  a. Picea crassifolia  b. Picea asperata  c. Picea purpurea  d. Potentilla fruticosa  e. Spiraea salicifolia  67 

f. Caragana sinica68 

69 

3. Results and Discussion70 

3.1 Belowground Biomass and Soil Organic Carbon Content71 

Figure 2 delineates pronounced disparities in belowground biomass and soil 72 

organic carbon (SOC) content between tree (TREE) and shrub (SHRUB) communities 73 

across soil depths. In the surface layer (0–10 cm), tree soils (e.g., TREE1: 912 ± 50 74 

g/m²) harbor significantly greater belowground biomass than shrub soils (e.g., 75 

SHRUB1: 411 ± 30 g/m²). This trend continues with decreasing depth; at 10–20 cm, 76 

TREE1's biomass reduces to 204 ± 20 g/m², and SHRUB1 to 104 ± 15 g/m², while at 77 

20–30 cm, values are 106 ± 10 g/m² for TREE1 and 52 ± 5 g/m² for SHRUB1. 78 

Correspondingly, SOC content is markedly higher in tree soils in the surface layer 79 

(TREE1: 262 ± 20 g/kg vs. SHRUB1: 153 ± 15 g/kg), decreasing with depth to 52 ± 5 80 

g/kg for TREE1 and 42 ± 5 g/kg for SHRUB1 at 20–30 cm.81 

82 

The elevated belowground biomass and SOC in tree communities suggest a more 83 

substantial contribution to carbon fixation and organic matter input, attributed to their 84 

extensive root systems(Alberti et al. 2015). Conversely, shrubs, with their shallower 85 

root systems, exhibit lower biomass and SOC, indicating reduced carbon 86 

sequestration and faster turnover rates(Tariq et al. 2024). The positive correlation 87 

Note: a. Picea crassifolia b. Picea asperata c. Picea purpurea d. Potentilla fruticosa e. Spiraea salicifolia f. Caragana sinica

Table 1: Basic Characteristics of the Research Plots

3. Results and Discussion
3.1. Belowground Biomass and Soil Organic Carbon Content
Figure 2 delineates pronounced disparities in belowground 
biomass and soil organic carbon (SOC) content between tree 
(TREE) and shrub (SHRUB) communities across soil depths. In 
the surface layer (0–10 cm), tree soils (e.g., TREE1: 912 ± 50 g/
m²) harbor significantly greater belowground biomass than shrub 
soils (e.g., SHRUB1: 411 ± 30 g/m²). This trend continues with 
decreasing depth; at 10–20 cm, TREE1's biomass reduces to 204 
± 20 g/m², and SHRUB1 to 104 ± 15 g/m², while at 20–30 cm, 
values are 106 ± 10 g/m² for TREE1 and 52 ± 5 g/m² for SHRUB1. 
Correspondingly, SOC content is markedly higher in tree soils in 
the surface layer (TREE1: 262 ± 20 g/kg vs. SHRUB1: 153 ± 15 g/
kg), decreasing with depth to 52 ± 5 g/kg for TREE1 and 42 ± 5 g/
kg for SHRUB1 at 20–30 cm.

The elevated belowground biomass and SOC in tree communities 
suggest a more substantial contribution to carbon fixation and 
organic matter input, attributed to their extensive root systems 
[8]. Conversely, shrubs, with their shallower root systems, exhibit 
lower biomass and SOC, indicating reduced carbon sequestration 
and faster turnover rates [9]. The positive correlation between 
belowground biomass and SOC underscores the pivotal role of 
vegetation in carbon cycling, with greater biomass enhancing 
organic matter input and carbon sequestration potential [10].

Summary: Trees, with their deeper root systems and higher biomass, 
are more effective in promoting SOC storage and mitigating 
carbon loss, particularly in surface soils [11]. Shrubs contribute 
less to long-term SOC accumulation. These findings highlight the 
decisive influence of vegetation type on soil carbon dynamics, 
emphasizing the importance of trees in carbon sequestration and 
soil fertility enhancement [12].
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3.2. Composition of Soil Fungal and Bacterial Communities
3.2.1.  Analysis of Soil Fungal and Bacterial Composition
As can be seen from Figures 3 and 4, the soils under trees and 
the soils under shrubs have different microbial community 
compositions, with implications for soil organic carbon (SOC) 
content [13]. Fungal community analysis revealed comparable 
Ascomycota abundances in tree (TREE1: 0.6949 ± 0.024) and 
shrub (SHRUB1: 0.6635 ± 0.018) soils, yet SHRUB2 showed the 
highest Ascomycota abundance at 0.7399 ± 0.025. Basidiomycota 
was more abundant in tree soils, exemplified by TREE1 (0.2469 
± 0.018) versus SHRUB1 (0.1877 ± 0.016). Bacterial community 
variations were subtle; Proteobacteria abundance was consistent 
across tree (TREE1: 0.2687 ± 0.021) and shrub (SHRUB1: 
0.2437 ± 0.017) soils, while Actinobacteriota was more prevalent 
in TREE1 (0.2033 ± 0.019) than SHRUB1 (0.1695 ± 0.015). 
Acidobacteriota peaked in TREE3 (0.2109 ± 0.018) and was less 
in SHRUB3 (0.1822 ± 0.015). Correlative analyses indicated that 
higher Ascomycota abundances, particularly in SHRUB2 and 
TREE1, coincided with greater SOC content. Proteobacteria and 

Actinobacteriota abundances also tracked SOC levels; TREE2 and 
SHRUB2, with elevated Proteobacteria, showed SOC contents 
of 119.09 ± 5.12 g/kg and 50.11 ± 4.32 g/kg, respectively. These 
correlations emphasize the microbial taxa's pivotal role in SOC 
dynamics.

Synthesis and Implications: Significant disparities in the compo-
sition of fungal and bacterial communities between tree and shrub 
soils directly influence soil organic carbon (SOC) accumulation 
[14]. Ascomycota and Basidiomycota are pivotal in decomposing 
and transforming organic carbon, with Ascomycota particularly 
adept at degrading complex organic materials like lignin and cel-
lulose [15]. Proteobacteria and Actinobacteriota contribute signifi-
cantly to soil carbon cycling by rapidly decomposing fresh organ-
ic matter, thereby enhancing SOC content [16]. These microbial 
taxa, under varying vegetation types, act as key regulators of SOC 
dynamics, reflecting the distinct ecological strategies of trees and 
shrubs in modulating soil carbon processes and, consequently, the 
carbon dynamics within alpine forest ecosystems [17].
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Figure 3: Classification Composition of Soil Fungi and Bacteria Phyla

Note: The horizontal axis represents the average values of each sample within the sampling sites, while the vertical axis corresponds to 
the taxonomic classification levels in the annotation results.
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3.2.2. Analysis of Soil Fungal and Bacterial Diversity Differ-
ences
In the analysis of alpha diversity indices for soil fungi (Figure 
5.1) and soil bacteria (Figure 5.2), it was observed that the shrub 
community (SHRUB1) demonstrated significant advantages 
across multiple diversity metrics. Specifically, the Chao1 index 
for the SHRUB1 group was 462±20 for fungi and 4613±220 for 
bacteria, both significantly higher than those of other communities, 
reflecting a higher species richness. The Simpson index was 
0.98±0.01 for fungi and 0.99±0.01 for bacteria, indicating a higher 
species diversity within the SHRUB1 group. The Shannon index 
further confirmed the higher species diversity and evenness in the 
SHRUB1 group, with values of 6.5±0.5 for fungi and 11.0±0.5 
for bacteria. These results suggest that the shrub community 
may provide a more favorable ecological environment for soil 
microorganisms, thereby promoting an increase in microbial 
diversity. Statistical analysis revealed that these differences were 

significant at the p<0.05 level, underscoring the crucial role of shrub 
communities in maintaining soil microbial diversity.Bacteria, with 
their higher diversity and uniformity, are likely central to rapid 
organic matter decomposition and short-term carbon release [18]. 
In contrast, fungi, despite lower diversity, are crucial for long-term 
carbon stabilization, particularly in decomposing complex organic 
materials [19]. Shrub soils, with their higher microbial diversity, 
may hasten carbon cycling, while tree soils, with richer bacterial 
communities and greater biomass inputs, are more significant for 
long-term carbon sequestration [20].

Summary: The differential diversity of bacteria and fungi 
significantly impacts soil carbon dynamics, with bacteria driving 
short-term carbon flux and fungi focusing on long-term carbon 
fixation [21]. The interplay between vegetation types and microbial 
community structure is pivotal in shaping carbon cycling processes 
in alpine forest ecosystems [22].
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Figure 3 Classification composition of soil fungi and bacteria phyla132 
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4. Conclusion 
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deeper root structures and greater belowground biomass, which enhances the input of 187 

organic matter and promotes long-term SOC accumulation. In contrast, shrub soils, 188 

with their lower biomass, display significantly lower SOC content, suggesting less 189 

efficiency in the long-term stabilization of SOC. Fungal communities, especially 190 

those belonging to the Ascomycota, and bacterial communities, including 191 

Proteobacteria and Actinobacteriota, play crucial roles in regulating SOC content, 192 

with the latter being associated with rapid organic matter turnover and short-term 193 
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Figure 6: Conceptual Relationship Between Soil Organic Carbon and Soil Microbial Communities

As depicted in Figure 6, This study provides a comprehensive 
analysis of the interactions between soil organic carbon (SOC) 
and soil microbial communities under various vegetation types 
in alpine ecosystems. Soils dominated by trees, particularly 
coniferous species, exhibit substantial potential for carbon 
sequestration due to their deeper root structures and greater 
belowground biomass, which enhances the input of organic matter 
and promotes long-term SOC accumulation. In contrast, shrub 
soils, with their lower biomass, display significantly lower SOC 
content, suggesting less efficiency in the long-term stabilization 
of SOC. Fungal communities, especially those belonging to the 
Ascomycota, and bacterial communities, including Proteobacteria 

and Actinobacteriota, play crucial roles in regulating SOC 
content, with the latter being associated with rapid organic matter 
turnover and short-term carbon fluxes. The study underscores the 
significance of vegetation type in influencing the structure and 
function of soil microbial communities, thereby affecting carbon 
dynamics in alpine soils. It suggests that forest management 
strategies should prioritize tree species with deep root systems 
for effective carbon storage. Understanding the relationship 
between soil microbial diversity, SOC content, and vegetation 
type is essential for predicting future changes in carbon storage in 
response to climate change, particularly in high-altitude regions. 

Note: The horizontal axis represents the average values of 
each sample within the sampling sites, while the vertical axis 
corresponds to the values of the respective alpha diversity indices. 
In the boxplot, the symbols have the following meanings: the top 
and bottom lines of the box represent the upper and lower quartiles 

(Interquartile Range, IQR); the line within the box indicates the 
median; the upper and lower edges represent the maximum and 
minimum values (outliers within 1.5 times the IQR); points outside 
the upper and lower edges indicate outliers.

Figure 5.2: Alpha Diversity Index of Soil Bacteria
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Figure 5.1 Alpha Diversity Index of Soil Fungi169 
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Figure 5.2 Alpha diversity index of soil bacteria172 

Note: The horizontal axis represents the average values of each sample within the sampling sites, while the 173 

vertical axis corresponds to the values of the respective alpha diversity indices. In the boxplot, the symbols have 174 

the following meanings: the top and bottom lines of the box represent the upper and lower quartiles (Interquartile 175 

Range, IQR); the line within the box indicates the median; the upper and lower edges represent the maximum and 176 

minimum values (outliers within 1.5 times the IQR); points outside the upper and lower edges indicate outliers.177 

178 
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